K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2016

Ta sẽ chứng minh

\(\sqrt{x^2+1}+2\sqrt{x}\le\frac{2+\sqrt{2}}{2}\left(x+1\right)\)

\(\Leftrightarrow\left(\sqrt{x^2+1}+2\sqrt{x}\right)^2\le\frac{3+2\sqrt{2}}{2}\left(x+1\right)^2\)

\(\Leftrightarrow\frac{1+2\sqrt{2}}{2}\left(x^2+1\right)-4\sqrt{x\left(x^2+1\right)}+\left(2\sqrt{2}-1\right)x\ge0\)

\(\Leftrightarrow\left(\sqrt{x^2+1}-\sqrt{2x}\right)\left(\frac{1+2\sqrt{2}}{2}\sqrt{x^2+1}-\frac{4-\sqrt{2}}{2}\sqrt{x}\right)\ge0\)

BĐT trên luôn đúng do \(x^2+1\ge2x\)

Vậy ta có:\(\text{∑}\sqrt{x^2+1}+2\sqrt{x}\le\text{∑}\frac{2+\sqrt{2}}{2}\left(x+1\right)\le6+3\sqrt{2}\)

Đẳng thức xảy ra khi x=y=z=1

17 tháng 5 2016

tích trước trả lời sau

NM
28 tháng 7 2021

Áp dụng bất đẳng thức Bunhia ta có :

\(\left(\sqrt{1+x^2}+\sqrt{2x}\right)^2\le2\left(1+x^2+2x\right)=2\left(x+1\right)^2\text{ nên }\sqrt{1+x^2}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)

tương tự ta có : \(\hept{\begin{cases}\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\\\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\end{cases}}\)

Nên \(A\le\sqrt{2}\left(x+y+z+3\right)+\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\left(2-\sqrt{2}\right)\)

\(\le6\sqrt{2}+\left(2-\sqrt{2}\right)\sqrt{3\left(x+y+z\right)}\le6\sqrt{2}+\left(2-\sqrt{2}\right).3=6+3\sqrt{2}\)

dấu bằng xảy ra khi x=y=z=1

29 tháng 7 2021

ủa bạn oi nó là \(\sqrt{2}x\)mà có phai\(\sqrt{2x}dau\)

AH
Akai Haruma
Giáo viên
28 tháng 5 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((\sqrt{1+x^2}+\sqrt{2x})^2\leq (1+x^2+2x)(1+1)\)

\(\Leftrightarrow \sqrt{1+x^2}+\sqrt{2x}\leq \sqrt{2}(x+1)\)

Hoàn toàn tt: \(\left\{\begin{matrix} \sqrt{1+y^2}+\sqrt{2y}\leq \sqrt{2}(y+1)\\ \sqrt{1+z^2}+\sqrt{2z}\leq \sqrt{2}(z+1)\end{matrix}\right.\)

Tiếp tục Bunhiacopxky:

\((\sqrt{x}+\sqrt{y}+\sqrt{z})^2\leq (x+y+z)(1+1+1)\)

\(\Rightarrow (2-\sqrt{2})(\sqrt{x}+\sqrt{y}+\sqrt{z})\leq (2-\sqrt{2})\sqrt{3(x+y+z)}\)

Cộng theo vế những BĐT vừa thu được:

\(A\leq \sqrt{2}(x+y+z+3)+(2-\sqrt{2})\sqrt{3(x+y+z)}\)

\(\leq 6\sqrt{2}+(2-\sqrt{2}).3=6+3\sqrt{2}\)

Vậy \(A_{\max}=6+3\sqrt{2}\Leftrightarrow x=y=z=1\)

30 tháng 5 2018

theo đề bài là 2\(\sqrt{x}\) chứ đâu phải \(\sqrt{2x}\) đâu bn

NV
30 tháng 12 2021

\(\sqrt{4x+2\sqrt{x}+1}\le\sqrt{4x+\dfrac{1}{2}\left(2^2+x\right)+1}=\sqrt{\dfrac{9x}{2}+3}\)

\(=\dfrac{1}{\sqrt{21}}.\sqrt{21}.\sqrt{\dfrac{9x}{2}+3}\le\dfrac{1}{2\sqrt{21}}\left(21+\dfrac{9x}{2}+3\right)=\dfrac{1}{2\sqrt{21}}\left(\dfrac{9x}{2}+24\right)\)

Tương tự và cộng lại:

\(A\le\dfrac{1}{2\sqrt{21}}\left(\dfrac{9}{2}\left(x+y+z\right)+72\right)=3\sqrt{21}\)

\(A_{max}=3\sqrt{21}\) khi \(x=y=z=4\)

30 tháng 12 2021

\(A=1\sqrt{4x+2\sqrt{x}+1}+1.\sqrt{4y+2\sqrt{y}+1}+1\sqrt{4z+2\sqrt{z}+1}\)

\(\le\sqrt{\left(1+1+1\right)\left(4\left(x+y+z\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\right)}\)

\(=\sqrt{3.\left[51+\dfrac{4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{2}\right]}\)

\(\le\sqrt{3.\left[51+\dfrac{x+y+z+12}{2}\right]}\)

\(=\sqrt{189}\)

Dấu "=" xảy ra <=> x = y = z = 4

\(A=\sqrt{x^2+y\left(y-2x\right)}+\sqrt{y^2+z\left(z-2y\right)}+\sqrt{x^2+z\left(z-2x\right)}\)

\(=\sqrt{x^2-2xy+y^2}+\sqrt{y^2-2yz-z^2}+\sqrt{x^2-2xz+z^2}\)

\(=\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-z\right)^2}+\sqrt{\left(z-x\right)^2}\)

\(=x-y+y-z+z-x\)

\(=0\)

22 tháng 6 2020

Đầu tiên ta chứng minh được: \(\sum\sqrt{x}=\sqrt{\left(\sum\sqrt{x}\right)^2}\le\sqrt{3\left(x+y+z\right)}\le3\)

Ta lại có: \(\sqrt{1+x^2}+\sqrt{2x}=\sqrt{\left(\sqrt{1+x^2}+\sqrt{2x}\right)^2}\le\sqrt{2\left(1+x^2+2x\right)}=\sqrt{2}\left(x+1\right)\)

Tương tự, ta sẽ có: \(P\le\sqrt{2}\left(x+1+y+1+z+1\right)+\left(2-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le\sqrt{2}.6+\left(2-\sqrt{2}\right)3=6+\sqrt{2}.3\)

NV
13 tháng 12 2020

\(P\le\sqrt{3\left(\sum\dfrac{1}{\left(x+y\right)^2+\left(x+1\right)^2+4}\right)}\le\sqrt{3\left(\sum\dfrac{1}{4xy+4x+4}\right)}\)

\(P\le\sqrt{\dfrac{3}{4}\sum\left(\dfrac{1}{xy+x+1}\right)}=\dfrac{\sqrt{3}}{2}\)

\(P_{max}=\dfrac{\sqrt{3}}{2}\) khi \(x=y=z=1\)

5 tháng 6 2020

Ta có BĐT sau: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)

Áp dụng, ta được: \(\left(\sqrt{x^2+1}+\sqrt{2x}\right)^2\le2\left(x^2+1+2x\right)=2\left(x+1\right)^2\)

\(\Rightarrow\sqrt{x^2+1}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)(1)

Tương tự, ta có: \(\sqrt{y^2+1}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\)(2); \(\sqrt{z^2+1}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)(3)

Theo BĐT Cauchy-Schwarz, ta được: \(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le\left(1+1+1\right)\left(x+y+z\right)\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{3\left(x+y+z\right)}\)

\(\Rightarrow\left(2-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le\left(2-\sqrt{2}\right)\sqrt{3\left(x+y+z\right)}\)(Nhân 2 vế của bất đẳng thức với \(2-\sqrt{2}>0\))           (4)

Cộng theo vế của 4 BĐT (1), (2), (3), (4), ta được:

\(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}+\left(\sqrt{2x}+\sqrt{2y}+\sqrt{2z}\right)\)\(+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)-\left(\sqrt{2x}+\sqrt{2y}+\sqrt{2z}\right)\)\(\le\sqrt{2}\left(x+y+z+3\right)+\left(2-\sqrt{2}\right)\sqrt{3\left(x+y+z\right)}\)

\(\le6\sqrt{2}+\left(2-\sqrt{2}\right).3=6+3\sqrt{2}\)(Do theo giả thiết thì \(x+y+z\le3\))

hay \(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le6+3\sqrt{2}\)

Đẳng thức xảy ra khi x = y = z = 1

Vậy giá trị lớn nhất của biểu thức là \(6+3\sqrt{2}\), đạt được khi x = y = z = 1